Extension

UNIVERSITY OF CALIFORNIA Agriculture and Natural Resources Cooperative Extension

Publication by University of California Cooperative Extension

CONTENTS MARCH 2024

ARTICLES

- **3 DENITRIFYING WOODCHIP BIOREACTORS** Woodchip bioreactors are a new option for nitrate reduction in agricultural irrigation water.
- 5 SMALL-SCALE URBAN AGRICULTURE DEMONSTRATION SITE

Assessing the feasibility of growing several high value crops in Southern California.

7 DO AFRICAN TULIP TREES HARM NATIVE POLLINATORS

NEW MASTER FOOD PRESERVER PROGRAM

OFFICE

8

- **11 MEET THE TEAM** Get to know the people behind Cooperative Extension San Diego
- 12 CALENDAR Stay up-to-date with seminars, webinars, trainings, events, and more!

Click article to jump to page.

QUARTERLY UPDATES FROM OUR COUNTY DIRECTORS

Dear Readers,

With the rain we've been receiving across Southern California and San Diego lately, the hills are green and lush. So far this growing season, we've had two years of back to back above average rainfall. As it keeps raining, some parts of the county have received an average years' worth of rain before the year is up (the water year runs from October to September, coinciding with our dry season.) Despite the issues associated with it, rain is good for our groundwater, for farming, for the environment and for the landscape as we have lots of green all over the county.

Our UC Cooperative Extension office in San Diego County has experienced some growth as well and we are about to welcome two new advisor positions into our county. We have closed the search for a soil health and organic materials management position and an urban agriculture, environmental issues, and food systems position. We are excited to fill these new positions to help bring science-based solutions to address important, local issues in their areas of expertise. In addition, our team has also grown with the addition of three new staff members Lindsey Pedroncelli, Michael Jaquez, and Marilynn Click. Please join us in welcoming them by reading their biographic sketches included in this issue.

We are also growing the programs we offer to the public! We are happy to announce we have started a new Master Food Preserver Program to teach members of the public safe and effective methods of preserving food, which helps to ensure that you, your family, and your community have more access to healthy, delicious food. You can read more about the Master Food Preserver Program and the Community Education Specialist leading the program in this issue.

We hope you enjoy the articles in this quarterly newsletter on woodchip bioreactors, which are a great way to reduce runoff pollution, on whether African tulip trees harm pollinators, and about demonstrating urban agriculture.

Have a great Spring,

Chris and Ramiro UC Cooperative Extension San Dlego, Co-County Directors UC CE

Denitrifying Woodchip Bioreactors

By Gerry Spinelli and Chris Shogren

The name sounds extravagant, but denitrifying woodchip bioreactors, in their simplest form, are just a lined trench filled with woodchips through which agricultural drainage or runoff water slowly flows through under anaerobic conditions. The woodchips provide food for natural bacteria to convert nitrate in the water to harmless nitrogen gas. While research and adoption of woodchip bioreactors in Southern California is in the infancy stage, they have been used in the Midwest for over 20 years. Woodchip bioreactors are a new option that can help reduce the amount of nitrate in drainage water. These bioreactors are easy to build, cheap to maintain, and operate passively.

How do they work?

You and I, and all organisms in the animal kingdom are aerobic heterotrophs. A heterotroph is an organism that cannot produce its own energy and requires a food source (as opposed to plants which are autotrophs, which transforms light into an energy source). Aerobic means that we use oxygen in our metabolism. We use carbohydrates (that are reduced) as a donor of electrons to reduce oxygen (O₂, that is oxidized) turning it into water (H_aÕ). From this reaction we obtain energy for our metabolism. There are some bacteria that can use a different oxidized compound (other than oxygen) as an acceptor of electrons for their metabolism. These bacteria use nitrate (NO_2) and reduce it to molecular nitrogen (N_2) that is gaseous, inert and harmless. A woodchip

bioreactor creates the right conditions for these naturally occurring denitrifying bacteria to do what they're good at: using nitrate and transforming it into molecular nitrogen. For bioreactors to harness the benefits of denitrifying bacteria two things are needed: a source of carbon and anaerobic conditions. Woodchips are a cheap and readily available source of carbon, and anaerobic conditions are ensured as long as the water level remains high enough to continuously cover most of the woodchips. Generally, bioreactors are also lined to prevent high nitrogen water from infiltrating into the groundwater, but this is not necessary for their function.

How much nitrate can they remove?

The amount of nitrate removed from the water depends on several factors including retention time, water temperature, and age of bioreactor. Because denitrification is a biological process, the bacteria need time to feed and remove nitrate. For example, water that is retained in the bioreactor for 8 hours will have less nitrate removed compared to water retained for 24 hours (standard retention time). Water temperature also greatly influences how well the bacteria can do their job. Cooler temperatures slow the denitrification process. Fresh woodchips supply the bacteria with more carbon to feed on, thus removing more nitrate. The initial performance of bioreactors can be misleading and should be designed with long term performance in mind. As a reference, in the study conducted in the Salinas Valley linked at the end of this article, nitrogen concentration reductions by the bioreactor ranged from 5 mg/liter of nitrate-nitrogen in winter to up to 10 mg/liter of nitrate-nitrogen in summer.

How much water can they treat?

The amount of water that can be treated is determined by the size and design of the

bioreactor and assumes that there is no adjustable weirs located at the inlet and preferential flow through the woodchips. To outlet of bioreactor are used to manage begin our calculation of how much water water flow and maintain the water level in can be treated we start with the porosity of the bioreactor. If the flowrate entering the the woodchips. The porosity of the bioreactor changes substantially, it is woodchips is fairly easy to measure. For recommended to adjust the weirs accordingly. example, one can fill a 5-gal bucket with The woodchips slowly degrade over time woodchips, then add water until the bucket due to microbial activity and will eventually need to be replaced. Woodchip breakdown is full, then measure the volume of water added. A good reference value for woodchip time varies based on many factors, including porosity is 70%. One can calculate the the waters average temperature and nitrate volume of the trench and multiply it by the concentration. In the studies conducted in woodchip porosity to calculate the volume the Salinas valley, referenced below, authors of water in the bioreactor. Let's say the found that 10% of woodchips needed to be trench is 20 ft long, 5 ft wide, and 5 ft deep added annually, but they cite a study where on average. That gives us a volume of 500 ft³ woodchips in the saturated layer lasted >30 or 3,740 gallons. If the woodchips porosity is years. This aligns with the study conducted 70%, then the bioreactor can hold in the Midwest referenced below where 3740*0.7=2,618 gallons. If we want the water woodchips showed lifespans between 15 to to go through the bioreactor for 24 hours, or 20 years under optimal conditions before 1,440 minutes, then this bioreactor can treat they need to be replaced. 2,618/1,440 = 1.8 gpm. This seems like a small amount, but the bioreactor works 24/7, How much do they cost? while your agricultural operation produces The main costs associated with installing

runoff or tile drainage discontinuously. a woodchip bioreactor are excavation, What maintenance do they require? inflow control structures, liner, and woodchips. Total cost will vary by site, but Woodchip bioreactor maintenance is this article from 2021 reports installation minimal. Since the woodchips need to costs ranging from \$6,940 to \$11,820 in the remain submerged under water to create Midwest. Bioreactors are eligible for the anaerobic conditions for the bacteria, financial assistance through the NRCS

Environmental Quality Incentives Program (EQIP) which may provide a one-time installation payment or free design and engineering.

Can you use them in California?

There are no regulations prohibiting the use of woodchip bioreactors in California. That being said, the unincorporated area that is regulated by the County of San Diego Water Quality Program and many other areas throughout the state, have water quality regulations that prohibit the discharge of agricultural runoff. This limits the use of bioreactors (and other technologies such as activated carbon filters to remove neonicotinoids). Local water quali jurisdictions may have different regulations and it is recommended that you contact them before starting any major project.

Where can you get more information?

Contact your local UC extension advisor, Gerry Spinelli (San Diego) or Chris Shogren (Los Angeles). <u>This</u> article from UC extension advisors in the Salinas Valley provides an on-farm example of how much nitrate can be removed from water. The YouTube video from the Minnesota NRCS <u>here</u> shows the construction and importance of bioreactors. The website from Purdue engineering <u>here</u> has some useful links. The NRCS code which lists bioreactors as a conservation practice can be found <u>here</u> and the EQIP page can be found <u>here</u>.

ABOUT THE AUTHORS Gerry Spinelli, PhD Production Horticulture Advisor (530) 304-3738 | gspinelli@ucdavis.edu

Chris John Shogren Environment Horticulture Advisor cjshogren@ucanr.edu

Small-Scale Urban Agriculture Demonstration Site

By Lindsey Pedroncelli

Eric Middleton, Jan Gonzales, Ramiro Lobo, and I are working on a project assessing the feasibility of growing several high value crops in Southern California. With our demonstration site at the Carlsbad Flower Fields, we aim to show how best to grow blueberries, ginger, and turmeric in containers in small-scale, urban settings, such as backyards or vacant lots, in Southern California

Growers and aspiring farmers in San Diego County have expressed interest in using new growing techniques, expanding into urban areas, and diversifying their farming operations, but oftentimes they are lacking the resources to set up these operations in the most profitable way. Additionally, the inaccessibility and high cost of land and inputs are often prohibitive to trying out new techniques. We aim to address this need at our urban agriculture demonstration site where we are evaluating the best ways to grow high value crops in small-scale, urban settings in Southern California.

We chose to grow blueberries, ginger, and turmeric because they are relatively easy to grow perennial plants that yield high value products. Increasing this profit margin will help to offset the high costs associated with obtaining land and starting a farming operation in Southern California. Blueberries have successfully been grown in Southern California, but to our knowledge, ginger and turmeric have not

been grown in the region on this scale. We are testing ginger and turmeric production practices developed in Hawaii, Florida, and Virginia, and blueberry production practices from the Pacific Northwest to assess how they can be adapted to the Southern California region. All three crops are being grown in containers, which helps to make the farming operation mobile and eliminates the risk of planting in infertile or contaminated soil. Plants are being grown either outdoors or under high tunnels, which can help control temperature and sun exposure. We are testing out two high tunnel designs: a kit with steel hoops, and a "DIY" design with PVC hoops. For all three crops, we are conducting a survey of the pests and diseases that affect these crops and will establish scale-appropriate integrated pest management guidelines. We are also testing several fertilizer regimes and cultivation techniques.

To evaluate which varieties grow best and produce the highest yield, we are growing several blueberry, ginger, and turmeric varieties at our demonstration site. The three main blueberry varieties are 'Snowchaser', 'Misty', and 'Star', and we are also growing 'Farthing', 'Meadowlark', 'Sunshine Blue', 'San Joaquin', and 'Jubilee'. The three main varieties have different seasonality, meaning they will produce fruit at different times during the season. We are eager to see if growing these three varieties will help to extend the growing season. Fruit from each plant will be harvested and weighed weekly to track yield. We are growing traditional yellow ginger (*Zingiber* officinale) and orange turmeric (*Cucurma* longa), and we also have several other varieties including black turmeric, blue turmeric, yellow turmeric, green turmeric, mild white turmeric (mango ginger), spicy white turmeric (*Cucurma zedoaria*), galangal Thai ginger, lesser galangal Thai ginger, shampoo ginger, and spiral ginger. Ginger and turmeric will be harvested in the fall and each plant will be weighed to track the yield.

We will create a production guide detailing each step that should be taken to set up and make a profit from an operation like this. We will include everything from where to buy a high tunnel kit and how to build it, to what containers and growing media to use, which varieties to grow, where to source plants, how often to irrigate and fertilize, and how to manage pests and diseases. There will also be guidance on selling and marketing the products, and how to participate in agritourism.

Building the site ourselves has allowed us to experience first-hand the challenges that arise when starting a farming operation at this scale. One of the first challenges was finding where to buy our starting plant material. Additionally, when we began building the site, we found that the soil was too compact to drive ground posts into, so we had to figure out how to drill into the ground to secure our high tunnels. We had to prepare for and deal with the aftermath of several rainstorms, which shifted our site prep timeline. Building the steel high tunnel tested our strength, but we are excited to see how it compares to a PVC high tunnel, which was much easier to build. We have been presented with fantastic learning experiences every step of the way, all of which will be translated into our production guide.

Our demonstration site is located at the Flower Fields in Carlsbad and will be open for guided tours starting in March of 2024. Our website will be up and running soon, but please feel free to contact us via email if you are interested in scheduling a tour.

ABOUT THE AUTHOR Lindsey Pedroncelli, Ph.D. Staff Research Associate 2 Irpedroncelli@ucanr.edu

Do African Tulip Trees Harm Native Pollinators?

By Eric Middleton

African tulip trees (Spathodea campanulata) are originally native to tropical dry forests in Africa but are now a common ornamental in parts of Southern California. They are frequently found in parks and residential yards and are easily recognizable by their large red, orange, or yellow trumpet-shaped flowers. The trees bloom in late summer and early fall and can grow quite large (up to 80 ft), although smaller trees are also common.

Despite their beauty, African tulip trees may be hiding a deadly secret. Previous studies from Brazil have found that the nectar of these trees may be toxic to some insects, and numerous dead arthropods have been found inside the flowers. In particular, this seems to be a problem for native stingless bees in Brazil. Similar effects have also been reported from Australia, where native stingless bees have been found dead inside the flowers of African tulip trees. In both countries, the trees appear actively detrimental to at least some species of native pollinators.

flowers growing in Mission Valley, San Diego

This begs the question: Do African tulip trees in Southern California harm our native pollinators? No studies have been published on the effects these trees have on native pollinators in California, and the concern is that California native bees can be attracted to and then killed by the flowers.

To begin to answer this question, I located multiple African tulip trees around San Diego and checked their flowers for dead insects during late summer and early fall of 2022 and 2023, with most of the effort taking place in 2023. Several UC Master Gardener volunteers across San Diego and Orange counties also checked African tulip trees around where they live and added to the data collection effort.

We found multiple dead native bees and numerous other dead insects inside African tulip tree flowers. In total, we sampled ~50 trees, checked ~9,500 African tulip tree flowers, and found a total of 1,214 dead insects inside, including 241 dead bees. Almost all the bees were tiny native bees in the genera *Halictus* or Lasioglossum. From our results so far, it seems like African tulip trees may pose at least some threat to our native bees.

However, the number of dead bees we found in flowers seemed to vary a lot by By Marilynn Click location and by time of year. For example, I found 84 dead native Halictus bees in a single day in a single small African tulip tree in Mission Bay in late August 2023. On the New to San Diego County, we are proud to same day, numerous other African tulip trees introduce our UC Master Food Preserver within a couple hundred feet had no dead Volunteers. In today's world (with a growing bees in their flowers. Additionally, we found focus on sustainability, self-sufficiency, and the most dead bees right at the end of healthy living), preserving food has never August, with fewer and fewer being found been more important. Our program empowers later on in the season. Time and place appear individuals with the knowledge, skills, and to matter quite a lot for how much these trees confidence to become experts in the art and impact pollinators. science of food preservation.

For 2024, I'd like to organize a more Imagine a community where surplus thorough and consistent sampling effort. fruits and vegetables from backyard gardens With that information, we can better and local farms are transformed into understand where and when African tulip delicious jams, pickles, and canned goods; therefore, reducing food waste and providing trees are an issue and determine how best to nutritious options year-round. This is the move forward. For now, we don't have vision behind the Master Food Preserver enough information to say with certainty that African tulip trees are a real threat to our Volunteer program. native bees, only that they can sometimes be a problem in certain locations. Through hands-on training, expert-led

workshops, and comprehensive educational Stay tuned for updates on this research resources, volunteers learn safe science-based once the African tulip trees start blooming methods for canning, freezing, drying, and again this year! In the meantime, if you have fermenting a wide variety of foods. In turn,

African tulip trees in your yard or in parks close to where you live, take a look inside the flowers. You just may find some dead bees or other insects.

ABOUT THE AUTHOR Eric MIddleton Area IPM Advisor egmiddleton@ucanr.edu

New Master Food Preserver Program

they become trusted advisors within their communities, continuing to share their expertise and promote safe food preservation practices.

The Master Food Preserver Volunteer program is more than just preserving food. It is about building connections, fostering resilience, and empowering individuals to take control of their food supply in a sustainable and environmentally friendly way. We hope to see you at an upcoming workshop or presentation. Together, we can make a tangible difference in our community's food landscape.

Contact us at mfpsd@ucanr.edu or visit our website at https://ucanr.edu/sites/MFPSDC/

ABOUT THE AUTHOR Marilynn Click Master Food Preserver Coordinator mclick@ucanr.edu

A UCCE Master Gardener Program of San Diego County Event

SPRING GARDEN EXPO

A TWO DAY EVENT

LET THE YOUNG BUDS BLOOM

MAY 4 • 9A - 3P | HOME DEPOT LEMON GROVE 7530 BROADWAY, LEMON GROVE, CA 91945

JOIN US FOR GARDENING TALKS, DEMONSTRATIONS, AND CRAFTS

MARKETPLACE: GROW, SOW, SHOP

MAY 18 • 9A - 3P | COLLEGE AREA COMMUNITY GARDEN ZURA WAY AND MONTEZUMA RD, SAN DIEGO, CA 92115 **NEAR SAN DIEGO STATE UNIVERSITY**

VISIT FOR DEMONSTRATIONS, FREE TOOL SHARPENING, CRAFTS, WORKSHOPS AND A MARKETPLACE WITH PLANTS, BIRDHOUSES, AND GARDEN ART.

https://www.mastergardenersd.org

Bread and Butter Pickled Jicama

14 cups cubed jicama

- 3 cups thinly sliced onion
- 1 cup chopped red bell pepper
- 4 cups distilled white vinegar (5%)
- 4¹/₂ cups white sugar
- 2 tablespoons mustard seed
- 1 tablespoon celery seed
- 1 teaspoon ground turmeric

Yield: About 6 pint jars

- 1. according to manufacturer's directions.
- 2. to a boil, reduce heat and simmer 5 minutes. Stir occasionally.
- 3. towel; apply two-piece metal canning lids.
- 4. Let cool, undisturbed, 12-24 hours and check for seals.

Table 1.Recommended process time for Bread and Butter Pickled Jicama in a boiling-water canner.				
		Process Time at Altitudes of		
Style of Pack	Jar Size	0 - 1,000 ft	1,001 - 6,000 ft	Above 6,000 ft
Hot	Pints	15 min	20 min	25 min

Developed at The University of Georgia, Athens, for the National Center for Home Food Preservation Released by Elizabeth L. Andress, Ph.D., Department of Foods and Nutrition, College of Family and Consumer Sciences. March 2003.

This material is based upon work supported by the Cooperative State Research, Education, and Extension Service, U.S. Department of Agriculture, under Agreement No. 00-51110-9762.

Wash and rinse pint canning jars; keep hot until ready to use. Prepare lids

Combine vinegar, sugar and spices in a Dutch oven or large saucepot. Stir and bring to a boil. Stir in prepared jicama, onion slices, and red bell pepper. Return

Fill hot solids into clean, hot pint jars, leaving ½-inch headspace. Cover with boiling hot cooking liquid, leaving 1/2-inch headspace. Remove air bubbles and adjust headspace if needed. Wipe rims of jars with a dampened clean paper

Process in a boiling water canner according to the recommendations in Table 1.

MEET THE TEAM

Get to know the people behind Cooperative Extension San Diego! Each issue we like to highlight some members of our amazing team.

Staff

Meet our

Lindsey Pedroncelli, Ph.D. Staff Research Associate 2

Lindsey grew up in Sonoma County, California, and has been fascinated by plants her whole life. She earned a B.S. in Microbiology from Cal Poly, San Luis Obispo and a Ph.D. in Plant Pathology from University of California, Riverside, where she developed a passion for agriculture and science communication. She began working as a Staff Research Associate with UCCE San Diego in September of 2023 and is currently helping to develop best practices for growing blueberries, ginger, and turmeric in small-scale urban settings in San Diego County. She enjoys helping growers manage plant diseases while also educating the public about where their food comes from.

Meet our Staff Michael Jaquez Community Education Specialist III

Michael Jaquez is our newest Community Education Specialist

with the Climate Smart Agriculture team at University of California Agriculture and Natural Resources. Based in San Diego County, he is excited to create connections with local farmers and growers and provide technical assistance to increase the use of climate smart agricultural practices. Michael obtained a B.S. degree in Animal Science with a minor in Dairy Science from California Polytechnic State University, San Luis Obispo and later returned to Cal Poly to complete a M.S. degree in Agricultural Education. As a San Diego native, Michael has spent time within the dairy industry, worked as an agricultural educator and FFA Advisor, and helps with his family's regenerative meat and egg farm located in Ramona, Three Sons Farm.

2024

Ca ay up-to-date v

APRIL

COC DEMO GARDEN LUNCH & LEARN

- iii April 3rd, 12 PM 12:30 PM
- **Q** County Operations Center, Courtyard
- *Ink to event page*

CHULA VISTA EARTH DAY, MG TOOL CARE

- iii April 13th, 11 AM 3 PM
- **Q** Chula Vista Bayfront Park
- Solution Link to event page

CORONADO FLOWER SHOW, MG TOOL CARE

- iii April 20th, 1 PM 4:30 PM
- Spreckels Park
- Solution Link to event page

LAST WEDNESDAY MEETING

- April 24th, 1 PM 2 PM
- San Diego County Farm Bureau, Virtual
- Solution
 Link to event page

CALENDAR

Stay up-to-date with seminars, webinars, trainings, events, and more!

MAY

COC DEMO GARDEN LUNCH & LEARN

- iiii May 1st, 12 PM 12:30 PM
- County Operations Center, Courtyard
- *Link to event page*

MASTER GARDENERS SPRING GARDEN EXPO

- iiii May 4th, 9 AM 3 PM
- Home Depot, 7530 Broadway, Lemon Grove
- *Link to event page*

MASTER GARDENERS SPRING GARDEN EXPO

- 🛗 May 18th, 9 AM 3 PM
- College Area Community Garden, near SDSU
- Solution Link to event page

LAST WEDNESDAY MEETING

- 🛗 May 29^{th,}, 1 PM 2 PM
- San Diego County Farm Bureau, Virtual
- *Ink to event page*

We hope you have enjoyed this issue of the Extension Connection!

We will continue bringing you the latest news from UC Cooperative Extension San Diego, and we would also like to hear from you.

What Do You Think?

TAKE OUR SURVEY

Please consider subscribing to this quarterly newsletter and following us on social media!

SUBSCRIBE

Contact Us: 9335 Hazard Way, Suite 201 San Diego, CA 92123 (858) 822-7711 https://cesandiego.ucanr.edu

The University of California Division of Agriculture & Natural Resources (UCANR) is an equal opportunity provider. (Complete nondiscrimination policy statement can be found at http://ucanr.edu/sites/anrstaff/files/215244.pdf) Inquiries regarding ANR's nondiscrimination policies may be directed to UCANR, Affirmative Action Compliance Officer, University of California, Agriculture and Natural Resources, 2801 Second Street, Davis, CA 95618, (530) 750-1343.